MICRO LARGE CONNECTION

CONNECT UP TO 24 INDOOR UNITS/150\% CAPACITY

FDC 224 KXZME1 22.4 kW three-phase
FDC 280 KXZME1 28.0 kW three-phase
FDC 335 KXZME1A 33.5 kW three-phase

CHARACTERISTICS

- 1 DC Inverter compressors (8~12HP)
- High split: up to 510 m in total and with a maximum distance between the $0 . U$. and the furthest I.U. of 160 m

OPERATING RANGE

* With length difference between the furthest indoor unit and the nearest one from the first branch pipe $<40 \mathrm{~m}$.

VRF-T TECHNOLOGY

With VRF-T technology, refrigerant temperature control during the condensation and evaporation phases in the refrigerant system ensures energy savings up to 34% in cooling mode during the partial loads, compared to the traditional VRF models.

Traditional system
cooling operation

In a traditional system, the refrigerant target pressure to be maintained is constant. As soon as room temperature reaches the temperature set by the user, the compressor is forced to decrease and increase the rpm by on-off cycles that affect the overall efficiency and performance.

KXZ system cooling
operation with activation of VRF-T mod

With the new VRF-T, the refrigerant target pressure to be maintained is not constant, but adjusts proportionally to the difference between the room temperature and the desired temperature. This allows the Inverter compressors to modulate the rpm without ever stopping, thus expressing the maximum efficiency for a global energy saving operation.

MICRO LARGE CONNECTION

8~12HP (22.4~33.5 kW)

REFRIGERANT CONNECTIONS

HP		8	10	12
Liquid side	FurthestI.U.$=<90 \mathrm{~m}$	09.52		012.7
Gas side		019.05	022.22	025.4
Liquid side	FurthestI.U.$\Rightarrow 90 \mathrm{~m}$	012.7		
Gas side		022.22		

BRANCH PIPES

Models			FDC224KXZME1	FDC280KXZME1	FDC335KXZME1A
Rated power		HP	8	10	12
Nominal capacity ($\mathrm{T}=35^{\circ} \mathrm{C}$)	Cooling	kW	22.40	28.00	33.50
Power consumption ($\mathrm{T}=35^{\circ} \mathrm{C}$)		kW	5.59	7.90	10.68
Seasonal energy efficiency index		SEER1	6.55	6.03	5.84
Rated energy efficiency coefficient		EER2	4.01	3.54	3.14
Nominal capacity ($\mathrm{T}=7^{\circ} \mathrm{C}$)	Heating	kW	22.40	28.00	33.50
Power consumption ($\mathrm{T}=7^{\circ} \mathrm{C}$)		kW	4.97	6.53	8.44
Seasonal energy efficiency index		SCOP1	4.55	4.54	4.04
Rated energy efficiency coefficient		COP2	4.51	4.29	3.97
Electrical data					
Power		Ph-V-Hz	3Ph-380~415V-50Hz		
Rated current	Cooling	A	9.40	12.80	17.80
Rated current	Heating	A	7.80	10.50	14.40
Maximum current		A	20.00	20.00	23.00
Refrigerant circuit/features					
Refrigerant (GWP)3			R410A (2088)		
Quantity refrigerant pre-load4		kg	11.5	11.5	11.5
Tons of CO2 equivalent			24.012	24.012	24.012
Diameter refrigerant pipes	Liquid	inch (mm)	03/8" ${ }^{\prime \prime}(9.52)$	$03 / 8{ }^{\prime \prime}(9.52)$	$01 / 22^{\prime \prime}(12.7)$
	Gas		03/4" 19.05)	$87 / 18^{\prime \prime}(22.22)$	81" ${ }^{\prime \prime}$ (25.4)
Product Specifications					
Dimensions	LxHxD	mm	1675x1080x480	$1675 \times 1080 \times 480$	1675x1080x480
Net weight		kg	221	221	224
Sound pressure level	Max	dB(A)	59	60	62
Sound power level	Max	dB(A)	75	76	77
Treated air volume	Standard	m3/h	12000	12000	12000
Fan static pressure	Max	Pa	35	35	35
Max. connectable I.U. 5	Min ~ Max	no	1~22	1~24	1~24
	Capacity	\%	50~150	$50 \sim 150$	$50 \sim 150$

1. EU Regulation No. 206/2012 - N. 2281/2016-Value measured according to the harmonised standard EN 14825.2 . Value measured according to the harmonised standard EN 14511.3 . Refrigerant leakage contributes to climate change. When released into the atmosphere, refrigerants with a lowe global warming potential (GWP) contribute less to global warming than those with a higher GWP. This appliance contains a refrigerant with a GWP of 2088. If 1 kg of this refrigerant fluid were released into the atmosphere, therefore, the impact on global warming would be 2088 times higher than kg of CO2, over a period of 100 years. Under no circumstances should the user try to intervene on the refrigerant circuit or disassemble the product. Always contact qualified personnel ifnecessary. 4. For the calculation of the additional refrigerant charge refer to the labels placed inside and outside the unit. 5 . When connecting indoor units oftype FDK, FDFL, FDFU or FDFW the upper limit tis always 130%.
