HOT WATER E ONSEN

SCALDACQUA IN POMPA DI CALORE E RISCALDATORI IN POMPA DI CALORE PER PISCINE

Hot Water e riscaldatori Onsen

SCALDACQUA IN POMPA DI CALORE E RISCALDATORI PER PISCINE

Termal è un'azienda leader nella produzione e nella commercializzazione di apparecchiature impiantistiche di utilizzo domestico: Termal propone una gamma diversificata in capacità e dimensioni per la produzione di acqua calda sanitaria e per riscaldare piscine di medie e piccole dimensioni.

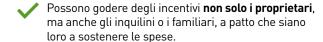
LINE UP PRODOTTI	3
■ HOT WATER	4
APPLICAZIONI	8
SCHEDE TECNICHE	20
■ RISCALDATORI ONSEN	26
SCHEDE TECNICHE	28
NORMATIVE E DETRAZIONI FISCALI	30

DETRAZIONI FISCALI **50% E 65% CONTO TERMICO 2.0**

	RISTRUTTURAZIONE EDILIZIA* (DETRAZIONE 50%)	RIQUALIFICAZIONE ENERGETICA* (DETRAZIONE 65%)	CONTO TERMICO 2.0*
		Persone	
Caratti		Condomini	
Soggetti		Titolari d'impresa	a o di reddito agrario
			Amministrazioni pubbliche
Come lo ottengo?	Detrazione IRPEF	Detrazione IRPEF o IRES	Rimborso su conto corrente
Tempistiche di pagamento?	10 a	Entro 60 gg se <€ 5.000 Da 2 a 4 anni in base all'intervento se > € 5.000	
Come si calcola	% su costi totali prod materiale +		Fissato dalle caratteristiche del prodotto
Valore percentuale	50%	65%	Funzione delle caratteristiche del prodotto, fino al 65%
PRODOTTI	RISPARMIO ENERGETICO	ALTA EFFICIENZA	ENERGIA RINNOVABILE
Condizionatore in pompa di calore	~	~	✓
Pompa di calore aria-acqua	~	✓	✓
Scaldacqua in pompa di calore	~	✓	~

^{*} I parametri possono subire variazioni in base agli aggiornamenti delle normative vigenti.

QUALE INCENTIVO PER LE POMPE DI CALORE


Di quali incentivi si può usufruire in caso di installazione di una pompa di calore ad aria o ad acqua?

Generatore sostituito	Generatore installato	Ristrutturazione edilizia	Riqualificazione energetica	Conto Termico 2.0
Nessuno	Pompa di calore	✓		
Caldaia	Pompa di calore	✓	✓	~
Pompa di calore	Pompa di calore	✓	✓	✓
Caldaia + Pompa di calore	Pompa di calore	<u> </u>	<u> </u>	✓

LO SAPEVI?

Il bonus Ristrutturazione Edilizia incentiva non solo la ristrutturazione ma anche la **nuova installazione** di una pompa di calore: usala non solo d'estate ma anche per riscaldare casa nelle mezze stagioni, risparmia energia e contribuisci al rispetto dell'ambiente.

HOT WATER, LA GAMMA PIÙ COMPLETA DEL MERCATO

DUCTED
200/300/500L
serbatoio monoblocco
TWMBS 2202 A
TWMBS 2302 A
TWMBS 4502 A

DUCTED
200/300/500L
serbatoio monoblocco
TWMBS 2202 HEA
TWMBS 2302 HEA
TWMBS 4502 HEA

DUCTED Kitchen 80L serbatoio monoblocco TWMBS 8080-D A

COS'È IL GAS REFRIGERANTE R134A

Il gas R134A (GWP=1430), è un alogenuro alchilico usato come fluido refrigerante nei cicli frigoriferi a compressione. Esso fa parte della famiglia degli HFC, refrigeranti a basso impatto ambientale, sviluppati come sostituti dei CFC.

RISCALDATORI PER PISCINE ONSEN

TCPNS 701 Z - TCPNS 1001 Z TCPNS 1301 Z - TCPNS 1701 Z TCPNS 2101 Z TCPSS 3001 Z

COS'È IL GAS REFRIGERANTE R32

Il gas R32 (GWP=675), è difluorometano. È presente tra i gas fluorurati usato in condizionatori dalle molteplici destinazioni

Esso fa parte della famiglia degli HFC, refrigeranti a basso impatto ambientale, sviluppati come sostituti dei CFC.

VANTAGGI DEL GAS R32

- è ecologico;
- non è tossico;
- è leggermente infiammabile;
- non è dannoso e non presenta rischi per l'ozono;
- è molto efficiente.

Una gamma completa per ogni contesto applicativo

Efficienza - Risparmio - Benessere

La gamma di scaldacqua in pompa di calore Termal Hot Water si caratterizza per l'ampio numero di soluzioni in grado di soddisfare ogni esigenza in contesti applicativi diversificati, di piccole e grandi dimensioni. Le soluzioni tecnologiche Termal prevedono prodotti

- Ducted
- Ducted Kitchen

Tutti i modelli DUCTED sono dotati di serbatoio in acciaio Inox e di un sistema sbrinamento automatico gestito da microcomputer.

Tutti i modelli possono erogare acqua calda fino a 60° C, con il solo utilizzo del compressore e raggiungere una temperatura fino a 70° C tramite la resistenza elettrica. Con tali temperature è possibile eseguire cicli periodici di disinfezione termica dell'acqua calda accumulata, in grado di scongiurare la proliferazione del batterio della legionella.

Tutte le soluzioni sono **l'ideale per nuovi edifici e per progetti di ristrutturazione**: soddisfano infatti i requisiti per le **detrazioni fiscali** (ristrutturazione o riqualificazione energetica) o del **Conto termico 2.0**.

Vantaggi prodotti **DUCTED**

I modelli **DUCTED** sino a 500 litri, sono dotati di **anodo al titanio** che protegge il serbatoio dall'azione corrosiva dell'acqua in modo inesauribile.

Rispetto a una soluzione con anodo al magnesio, aumenta la vita utile del serbatoio ed è necessaria poca manutenzione, abbattendo così i costi dovuti a interventi periodici. Come ogni struttura metallica a diretto contatto con un elettrolita (acqua), anche i bollitori sono soggetti al fenomeno della corrosione. Reazioni elettrochimiche provocano la degradazione e la ricomposizione con altri elementi dei metalli con cui sono realizzati compromettendone inevitabilmente la struttura.

L' Anodo in Titanio è una **soluzione ecologica** e "pulita" rispettosa dell'ambiente e delle sue problematiche, pensato e progettato per funzionare utilizzando il minor quantitativo d'energia possibile.

L'anodo è alimentato elettricamente mediante una corrente continua che viene fatta circolare tra il dispositivo ed il serbatoio da proteggere.

Il cuore del sistema è l'innovativa elettronica completamente gestita da un microprocessore di ultimissima generazione in grado raggiungere prestazioni fino ad oggi impensabili per questa specifica applicazione.

Hot Water

La regolazione del valore della corrente impressa è basata su un efficientissimo algoritmo di calcolo, il quale permette di controllarne la giusta intensità in conformità al grado di protezione istantaneo ed al tempo di reazione del serbatoio. La lettura del valore di potenziale del sistema, effettuata attraverso lo stesso elettrodo in titanio avviene in modalità dinamica, permettendo una volta raggiunto il valore d'equilibrio, di mantenere presente il flusso di corrente

senza interruzioni frequenti o senza variazioni anche solo parziali d'intensità.

La capacità dell'Anodo in Titanio di auto-apprendere e regolarsi sulle effettive condizioni della struttura posta sotto protezione, fanno si che anche l'erogazione della corrente impressa avvenga in modo dinamico e perfettamente equilibrato alle esigenze del sistema da proteggere.

Abbinato a un impianto solare termico il risparmio è quasi assoluto

I modelli HEA DUCTED, offrono la possibilità d'integrazione con il solare termico.

Nei nuovi edifici la gamma degli scaldacqua in pompa di calore Termal Hot Water può essere utilizzata in quanto prodotti a energia rinnovabile con eventuale integrazione al solare termico.

È possibile ottenere un risultato veramente green, con risparmi davvero notevoli.

Serie **DUCTED Kitchen**

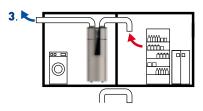
La serie "Ducted Kitchen" è nata per essere installata all'interno del mobilio a colonna della cucina: è un monoblocco da 80 litri con espulsione dell'aria all'esterno e aspirazione sia interna che esterna.

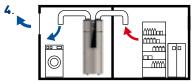
Il serbatoio è realizzato con tecnologia Duplex e presenta eccezionale resistenza alla corrosione. Invisibile ma di grande efficienza e soprattutto ecologico.

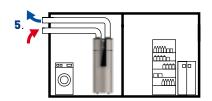
Serie **DUCTED**

Da posizionare in ambienti interni, è utilizzabile in diverse configurazioni installative, con o senza canalizzazione dell'aria in aspirazione o in espulsione. Grazie alla possibile installazione in parallelo o in serie (sistemi centralizzati), Termal Hot Water della serie "Ducted" è indicato anche per rispondere a esigenze di volumi importanti di acqua calda.

La versatilità installativa permette di sfruttare tutta l'energia dell'aria


È possibile l'aspirazione e/o l'espulsione dell'aria nel locale d'installazione oppure con condotti d'aria d'aspirazione e/o espulsione da altri locali. Occorre realizzare la rete di scarico della condensa. In particolare la serie "Ducted" permette l'utilizzo del sistema in pompa di calore, in **5 modalità installative**:


Installazione ad aria ricircolata: ingresso e uscita dell'aria avvengono nel locale d'installazione. La produzione di ACS avviene sfruttando l'aria presente in ambiente e contestualmente sottraendo a esso calore e umidità, raffreddandolo. È suggerita l'installazione di un setto divisorio che eviti il ricircolo dell'aria nelle immediate vicinanze della bocchetta di aspirazione.


Installazione con aspirazione d'aria interna: con uscita dell'aria verso l'esterno. La produzione di ACS avviene sfruttando l'aria presente nel locale d'installazione, che poi viene espulsa all'esterno tramite canalizzazione.

Installazione con aspirazione dell'aria da un altro ambiente ed espulsione verso l'esterno tramite canalizzazione. È una modalità installativa che consente, in situazioni in cui sono presenti locali con un elevato accumulo di calore, di far lavorare il sistema con un alto livello di efficienza energetica, garantendo il ricambio dell'aria senza la necessità di aprire la finestra.

Installazione con aspirazione dell'aria da un altro ambiente ed espulsione verso l'interno (con o senza canalizzazione in ambienti aventi aperture verso l'esterno). Situazione vantaggiosa ad esempio nelle cantine in cui bisogna avere aria fredda e deumidificata.

Installazione con aspirazione ed espulsione dell'aria verso l'ambiente esterno. Questa modalità permette di non aver un'alterazione di temperatura dell'ambiente dove è installato l'Hot Water. L'operatività dipende dalla temperatura minima e massima dell'aria esterna aspirata (consultare le schede tecniche dei prodotti). Questa applicazione è principalmente utilizzata in luoghi con temperature miti.

ESEMPI DI APPLICAZIONE RESIDENZIALE E COMMERCIALE

Gli Hot Water sono pensati per adattarsi a svariate applicazioni: da appartamenti fino a grandi condomini residenziali; per uffici ed esercizi commerciali. I modelli Termal sono realizzati in materiali innovativi per garantire una lunga durata dell'impianto, sono silenziosi ed efficienti.

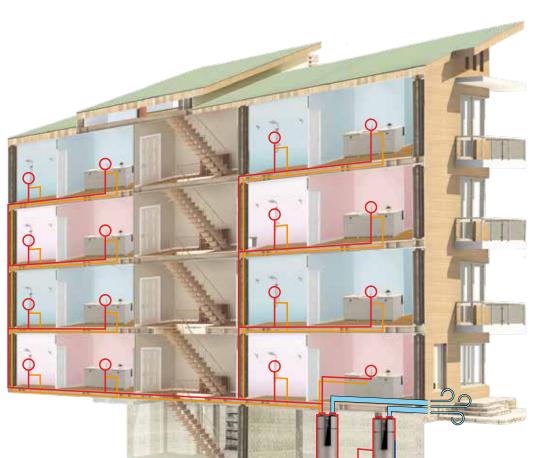
Le varie taglie di potenza soddisfano ogni fabbisogno energetico, e la disponibilità di acqua calda non sarà più un problema.

Condomini	9
■ Micro-condominio	11
Abitazioni indipendenti	13
■ B&B	16
■ Palestre o spogliatoi aziendali	17
■ Saloni di bellezza	19

ACS con Hot Water **DUCTED**

per condomini

Descrizione dell'impianto


I condomini, in base al numero e alle esigenze dei nuclei familiari che lo compongono, presentano dei fabbisogni di acqua calda sanitaria differenti.

I sistemi Hot Water DUCTED, con la loro vasta profondità di gamma, permettono di soddisfare i fabbisogni di acqua calda in ambiente condominiale.

Gli Hot Water possono essere posizionati singolarmente, in parallelo o in serie in un locale tecnico o di servizio dell'edificio, ad esempio cantina o centrale termica, con canalizzazione dell'aria.

Esempio pratico

Determinando una stima di consumi di ACS, per un condominio composto da 10 appartamenti da 70 m² ciascuno, sarebbero sufficienti n. 2 sistemi Hot Water DUCTED da 500 lt, salvo l'apporto energetico necessario al ricircolo.

DUCTED

TWMBS 2202 A - 200 litri TWMBS 2302 A - 300 litri TWMBS 4502 A - 500 litri

Configurazione modulare fra Hot Water di diversa capacità (lt)

x2 500 litri 300 litri

x2 TWMBS 4502 A DUCTED 500 litri

Calcolo secondo UNI TS 11300-2

temperatura acqua all'interno del serbatoio **4**0°C

temperatura di erogazione acqua alle utenze

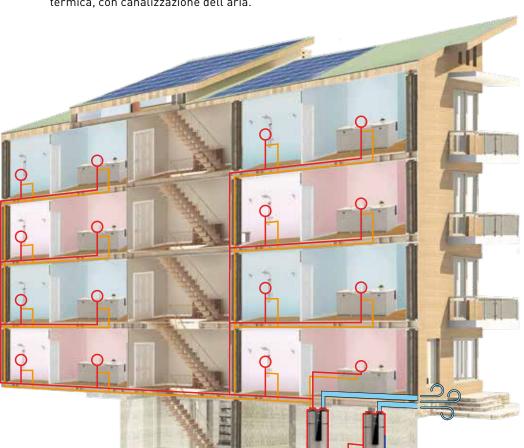
fabbisogno ACS al giorno totale

ACS con Hot Water

DUCTED

per condomini con solare termico

Descrizione dell'impianto


I condomini di nuova realizzazione o oggetto di ristrutturazione importante, presentano generalmente impianti solari termici utili per produrre acqua calda sanitaria "gratuitamente".

I sistemi Hot Water DUCTED, sono equipaggiati con una serpentina dedicata al solare termico.

Gli elevati valori di **COP**, anche **con aria aspirata a 7° C**, permettono di poter posizionare singolarmente, in parallelo o in serie gli Hot Water in un locale tecnico o di servizio dell'edificio, ad esempio cantina o centrale termica, con canalizzazione dell'aria.

Esempio pratico

Determinando una stima di consumi di ACS, per un condominio composto da 10 appartamenti da 70 m² ciascuno, sarebbero sufficienti n. 2 sistemi Hot Water DUCTED da 500 lt, salvo l'apporto energetico necessario al ricircolo.

DUCTED CON SOLARE TERMICO

TWMBS 2202 HEA COP 2,61 - 200 litri TWMBS 2302 HEA COP 2,68 - 300 litri TWMBS 4502 HEA COP 2,66 - 500 litri

Configurazione modulare fra Hot Water di diversa capacità (lt)

x2 500 litri 300 litri

x2 TWMBS 4502 HEA DUCTED 500 litri

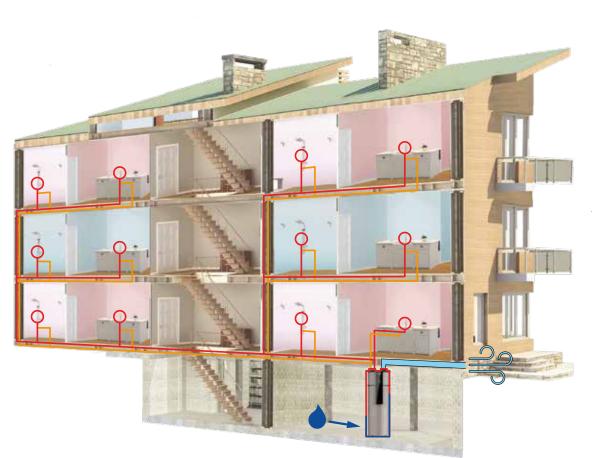
Calcolo secondo UNI TS 11300-2

appartamenti

• 1000 L

fabbisogno ACS al giorno totale **§** 50°C

temperatura acqua all'interno del serbatoio temperatura di


ACS con Hot Water **DUCTED** 500 L per micro-condomini

Descrizione dell'impianto

La tipologia applicativa, esemplificata nella figura, descrive l'impianto in un condominio di 5 appartamenti da 70 m² ciascuno, di nuova realizzazione, oggetto di ristrutturazione o che prevede sostituzione di impianti esistenti.

La produzione di acqua calda sanitaria è demandata a n. 1 sistema Hot Water monoblocco da 500 litri, salvo l'apporto energetico necessario al rigircolo

La pompa di calore può essere posizionata in un locale tecnico o di servizio dell'edificio, ad esempio cantina o centrale termica, con canalizzazione dell'aria trattata.

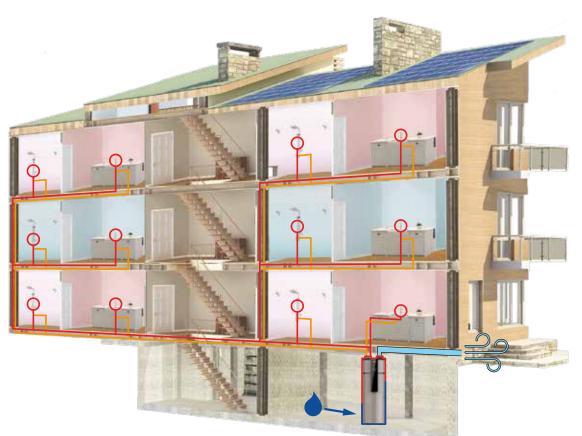
TWMBS 4502 A DUCTED

Calcolo secondo UNI TS 11300-2

appartamenti

fabbisogno ACS al giorno totale

temperatura acqua all'interno del serbatoio


ACS con Hot Water **DUCTED** 500 L

per micro-condomini con solare termico

Descrizione dell'impianto

La tipologia applicativa, esemplificata nella figura, descrive l'impianto in un condominio di 5 appartamenti da 70 m² ciascuno, di nuova realizzazione, oggetto di ristrutturazione o che prevede sostituzione di impianti esistenti.

La produzione di acqua calda sanitaria è demandata a n. 1 sistema Hot Water monoblocco da 500 litri, salvo l'apporto energetico necessario al ricircolo. Gli elevati valori di **COP**, anche **con aria aspirata a 7° C**, permettono di poter posizionare Hot Water in un locale tecnico o di servizio dell'edificio, ad esempio cantina o centrale termica, con canalizzazione dell'aria.

TWMBS 4502 HEA DUCTED

Calcolo secondo UNI TS 11300-2

giorno totale

<u>**8**50°C</u>

temperatura acqua all'interno del serbatoio

ACS con Hot Water **DUCTED** 200/300 L

per abitazioni indipendenti

Descrizione dell'impianto

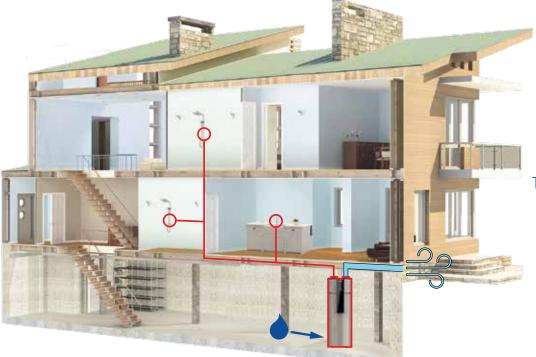
La tipologia applicativa, esemplificata nella figura, descrive l'impianto in un'abitazione indipendente, di nuova realizzazione, oggetto di ristrutturazione o che prevede sostituzione di impianti esistenti.

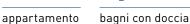
La produzione di acqua calda sanitaria è demandata a n. 1 sistema Hot Water monoblocco da 200 o 300 litri.

La pompa di calore può essere posizionata in un locale tecnico o di servizio dell'abitazione, ad esempio cantina o garage.

Con solare termico

Lo scaldacqua **DUCTED** è disponibile anche in versione con serpentino per il collegamento ad un impianto solare termico.


DUCTED


TWMBS 2202-2302 HEA DUCTED 200/300 litri

TWMBS 2202-2302 A 200/300 litri

e sanitari

famiglia di 3/4 persone

taglia del serbatoio

ACS con Hot Water

DUCTED KITCHEN 80 L

per abitazioni indipendenti

Descrizione dell'impianto

La tipologia applicativa, esemplificata nella figura, descrive l'impianto in un appartamento, di nuova realizzazione, oggetto di ristrutturazione o che prevede sostituzione di impianti esistenti.

La produzione di acqua calda sanitaria è demandata a n. 1 Hot Water da 80 litri.

La pompa di calore è progettata per essere installata in cucina, come una caldaia tradizionale, e si posiziona comodamente all'interno del mobilio a colonna della cucina, con espulsione dell'aria all'esterno.

La serie "Ducted kitchen" permette l'utilizzo in 2 modalità installative:

DUCTED KITCHEN TWMBS 8080-D A 80 litri

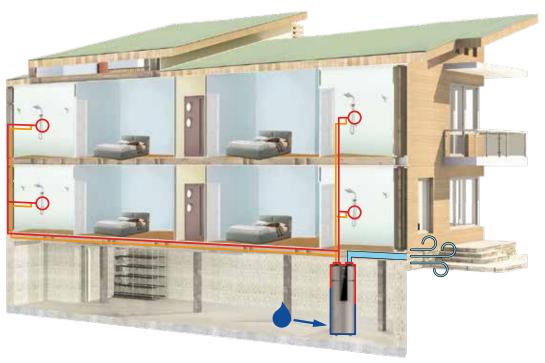
taglia del serbatoio

ACS con Hot Water

DUCTED 500 L per strutture ricettive (B&B); possibile integrazione con solare termico

Descrizione dell'impianto

La richiesta di acqua calda sanitaria per strutture ricettive di medie/piccole dimensioni, come B&B è estremamente variabile in base all'occupazione della struttura. Il consumo d'acqua è generalmente concentrato nelle prime ore del mattino e della sera.


Supponendo di avere una struttura composta da 5 camere, il fabbisogno può essere soddistatto con n. 1 Hot Water monoblocco da 500 litri, salvo l'apporto energetico necessario al ricircolo.

La pompa di calore può essere posizionata in un locale tecnico o di servizio dell'edificio, ad esempio cantina o centrale termica, con canalizzazione dell'aria trattata.

Con solare termico

Lo scaldacqua DUCTED è disponibile anche in versione con serpentino per il collegamento ad un impianto solare termico.

TWMBS 4502 A DUCTED 500 litri

TWMBS 4502 HEA DUCTED 500 litri

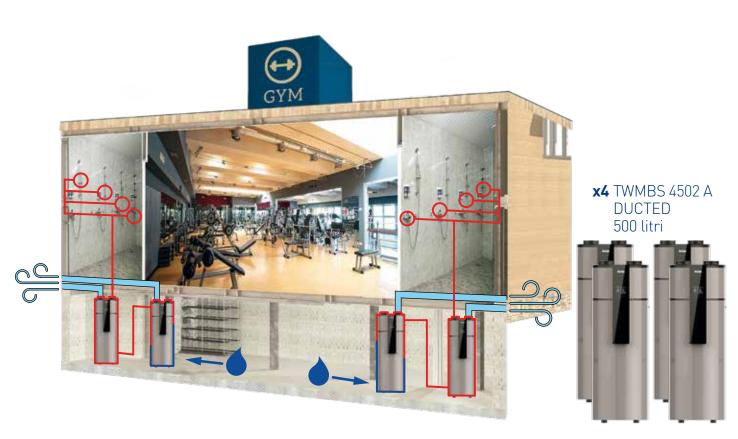
Calcolo secondo UNI TS 11300-2

camere

ospiti

fabbisogno ACS al giorno

temperatura di produzione ACS nel serbatoio PDC


ACS con Hot Water **DUCTED** 500 L per palestre

Descrizione dell'impianto

Le palestre o gli impianti sportivi necessitano di un quantitativo di acqua calda sanitaria usato prevalentemente per le docce. Il 90% del fabbisogno giornaliero è concentrato nelle ore serali.

Supponendo la presenza di 50 persone in questa fascia oraria, il fabbisogno di acqua calda può essere soddisfatto con n. 4 Hot Water da 500 litri posti in serie o in parallelo per un totale di 2.000 litri disponibili a 50° C.

Le pompe di calore possono essere posizionate in un locale tecnico o di servizio, ad esempio una centrale termica, con canalizzazione dell'aria trattata.

spogliatoi

utenti

utenti (30 mattino, 50 sera)

fabbisogno per persona

fabbisogno ACS al giorno totale

temperatura di produzione ACS nel serbatoio PDC

ACS con Hot Water **DUCTED** 300 L

per palestre o spogliatoi aziendali

Descrizione dell'impianto

La tipologia applicativa, esemplificata nella figura, descrive l'impianto in un'azienda con magazzino e uffici.

La produzione di acqua calda sanitaria è demandata a n. 1 sistema Hot Water monoblocco da 300 litri.

La pompa di calore può essere posizionata in un locale tecnico o di servizio, ad esempio una centrale termica, con canalizzazione dell'aria trattata.

TWMBS 2302 A DUCTED 300 litri

spogliatoi (con 3 docce ciascunol

utenti (5

per turno)

fabbisogno per persona

№ 10 **♦** 40 L **♦** 400 L

fabbisogno ACS al giorno

ACS con Hot Water **DUCTED** 500 L per saloni di bellezza

Descrizione dell'impianto

La tipologia applicativa, esemplificata nella figura, descrive l'impianto in un salone di bellezza.

La produzione di acqua calda sanitaria è demandata a n. 1 sistema Hot Water monoblocco da 500 litri.

La pompa di calore può essere posizionata in un locale tecnico o di servizio, ad esempio una centrale termica, con canalizzazione dell'aria trattata.

TWMBS 4502 A DUCTED 500 litri

clienti al giorno

fabbisogno per persona

fabbisogno ACS al giorno totale

temperatura di erogazione acqua alle utenze

temperatura di produzione ACS nel serbatoio PDC

Hot Water monoblocco 200/300/500 litri serie **DUCTED**

- Scaldacqua in pompa di calore monoblocco a basamento
- Gas refrigerante R134A
- Anodo al titanio con Led di allarme
- Resistenza elettrica integrativa da 1,5 kW
- Acqua calda sino a 60° C con il solo compressore; sino a 70° C con integrazione resistenza elettrica

Conneith	Temperatura di aspirazione (° C)				
Capacità	20	15	7		
200	4,16*	2,64**	2,20**		
300	4,16*	2,69**	2,30**		
500	4,02*	-	2,66**		

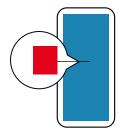
^{*} Test di fabbrica con aria aspirata a 20° C BS (15° C BU), acqua ingresso 15° C/uscita 55° C.

TWMBS 2202 A TWMBS 2302 A TWMBS 4502 A

Classe energetica

Certificazione EN 16147 da laboratorio terzo accreditato TUV Sud

Modello			TWMBS 2202 A	TWMBS 2302 A	TWMBS 4502 A
Volume serbato	io	L	200	300	500
Serpentina intec	grazione solare (Inox)	m ²	non presente	non presente	non presente
Potenza termica	nominale1	W	2020 2020		3800
Assorbimento e	lettrico nominale1	W	486	486	945
Capacità produz	tione acs nominale1	L/h	43,2	43,2	81,7
COP nominale1		W/W	4,16	4,16	4,02
COPDHW2		W/W	2,64	2,69	2,66
Profilo ciclo di p	rova ²	-	L	XL	XXL
Volume acqua c	alda a 40°C2	L	251	380	594
Classe di Efficier	nza Energetica ³	-	A	A	A
Grado di protezi	one IP	-	IPX1	IPX1	IPX1
Intervallo regola	azione T. acqua calda	%	10~70 (50 default)	10~70 (50 default)	10~70 (50 default)
Massima T. acqu	ua calda solo compressore	°C	60	60	60
Alimentazione		Ph-V-Hz	1-220~240V-50Hz		
Dati elettrici	Resistenza elettrica integrativa	W	1500		
	Corrente massima (inclusa resistenza)	A	10,00	10,00	13,00
	Tipo (GWP)4	-	R134a (1430)	R134a (1430)	R134a (1430)
Refrigerante	Quantità	kg	0,80	0,80	1,60
	Tonnellate di CO2 equivalenti	t	1,144	1,144	2,280
Compressore		-	Rotativo ON/OFF		
Dimensioni	Unità ø x H	mm	560 x 1755	640 x 1850	700 x 2230
	Peso netto	kg	90	100	117
Livello potenza:		dB(A)	55	56	59
Livello pressione		dB(A)	46	46	48
	Materiale serbatoio	-		Acciaio INOX 304	
	Connessioni ACS	pollici	G1" (DN25)	G1" (DN25)	G1" (DN25)
Serbatoio	Connessioni serpentina solare	pollici	_	-	-
	Tipo di anodo	-		Elettrodo di titanio con LED di allarme	
	Pressione massima di esercizio	bar	10	10	10
	Campo di lavoro	%		-5~+43	
	Portata aria (con canalizzazione)	m³/h	400	400	800
Aria aspirata	Prevalenza ventilatore	Pa	60	60	60
	Canalizzazione aria - Diametro	mm	177	177	177
	Canalizzazione aria - Lunghezza Max	m	6	6	6


1. Condizioni: aria aspirata 20° C BS (15° C BU), acqua ingresso 15° C / uscita 55° C, 2. Test secondo EN16147; aria 15° C per modelli da 200 e 300L; aria 7° C per modello 500L. 3. Direttiva 2009/125/CE - ERP EU n. 814/2013 (Certificazione TUV Sud per tutti i modelli).

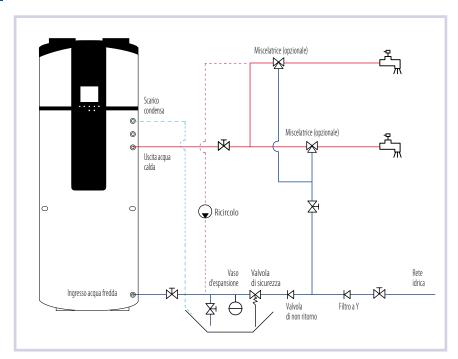
4. La perdita di refrigerante contribuisce al cambiamento dimatico. In caso di rilascio nell'atmosfera, i refrigeranti con un potenziale di riscaldamento globale (GWP) più basso contribuiscono in misura minore al riscaldamento globale rispetto a quelli con un GWP più elevato. Questo apparecchio contiene un fluido refrigerante con un GWP di 1430. Se 1 kg di questo fluido refrigerante fosse rilasciato nell'atmosfera, quindi, l'impatto sul riscaldamento globale sarebbe 1430 volte più elevato rispetto a 1 kg di CO2, per un periodo di 100 anni, In nessun caso l'utente deve cercare di intervenire sul circuito refrigerante o di disassemblare il prodotto. In caso di necessità occorre sempre rivolgersi a personale qualificato.

^{**} Test secondo EN 16147.

Plus di prodotto

Anodo al titanio inesauribile

Anodo al titanio di serie con il sistema Hot Water.


Comfort in casa

- Programmazione per sfruttare eventuali fasce orarie vantaggiose sulla tariffa elettrica e avere acqua calda disponibile nei momenti necessari.
- Due modalità operative: massimo risparmio con l'utilizzo del solo compressore o massima rapidità con l'utilizzo contestuale di pompa di calore e resistenza elettrica integrata, per produrre grandi quantità di ACS in tempi brevi.

Sicurezza

- Poiché lo scambiatore di calore è esterno al serbatoio, non è possibile alcuna contaminazione tra acqua e fluido refrigerante.
- Sistema antilegionella: il pericolo del batterio della legionella è scongiurato grazie a cicli periodici che innalzano la temperatura dell'acqua all'interno dell'accumulo oltre i 65° C.
- L'anodo al titanio, protegge il serbatoio dall'azione corrosiva dell'acqua in modo inesauribile: garantisce maggiore affidabilità e minori costi di manutenzione rispetto a una soluzione con anodo al magnesio.

Schema dei collegamenti idraulici

5 modalità d'installazione

- Installazione ad aria ricircolata: ingresso e uscita dell'aria avvengono nel locale d'installazione.
- 2. Installazione con aspirazione di aria interna e uscita verso l'esterno.
- Installazione con aspirazione da un altro ambiente ed espulsione verso l'esterno.
- 4. Installazione con aspirazione dell'aria da un altro ambiente e espulsione verso un ambiente interno (con o senza canalizzazione).
- Installazione con aspirazione ed espulsione dell'aria verso l'ambiente esterno.

Hot Water monoblocco 200/300/500 litri serie **DUCTED**

- con solare termico

POSSIBILITÀ D'INTEGRAZIONE CON SOLARE TERMICO

- Scaldacqua in pompa di calore monoblocco a basamento
- Gas refrigerante R134A
- Anodo al titanio con Led di allarme
- Resistenza elettrica integrativa da 1,5 kW
- Acqua calda sino a 60° C con il solo compressore; sino a 70° C con integrazione resistenza elettrica

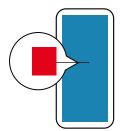
Comoniak	Temperatura di aspirazione (° C)				
Capacità	20	15	7		
200	4,39*	-	2,61**		
300	4,43*	-	2,68**		
500	4,02*	-	2,66**		

^{*} Test di fabbrica con aria aspirata a 20° C BS (15° C BU), acqua ingresso 15° C/uscita 55° C.

TWMBS 2202 HEA TWMBS 2302 HEA TWMBS 4502 HEA

Classe energetica

Certificazione EN 16147 da laboratorio terzo accreditato TUV Sud


Modello			TWMBS 2202 HEA	TWMBS 2302 HEA	TWMBS 4502 HEA	
Volume serbato	io	L	200	300	500	
Serpentina inted	grazione solare (Inox)	m ²	1,0	1,0	1,0	
Potenza termica	nominale1	W	2040	2040	3800	
Assorbimento e	lettrico nominale1	W	465	460	945	
Capacità produz	rione acs nominale1	L/h	43,5	43,5	82,0	
COP nominale1		W/W	4,39	4,43	4,02	
COPDHW2		W/W	2,61	2,68	2,66	
Profilo ciclo di p	rova2	-	Ĺ	XL	XXL	
/olume acqua c	alda a 40°C2	L	250	390	594	
lasse di Efficier	nza Energetica ³	-	A	A	A	
Grado di protezi	one IP	-	IPX1	IPX1	IPX1	
Intervallo regola	azione T. acqua calda	%	10~70 (50 default)	10~70 (50 default)	10~70 (50 default)	
Massima T. acqu	ua calda solo compressore	°C	60	60	60	
Alimentazione Dati elettrici Resistenza elettrica integrativa		Ph-V-Hz		1-220~240V-50Hz		
		W	1500			
	Corrente massima (inclusa resistenza)	A	10.00		13,00	
	Tipo (GWP)4	-	R134a (1430)	R134a (1430)	R134a (1430)	
Refrigerante	Quantità	kg	1,0	1,0	1,6	
,	Tonnellate di CO2 equivalenti	t	1,430	1,430	2,280	
ompressore	•	-	Rotativo ON/OFF			
```	Unità ø x H	mm	560 x 1755	640 x 1850	700 x 2230	
Dimensioni	Peso netto	kg	95	105	122	
ivello potenza :	sonora	dB(A)	58,2	58,2	59,2	
ivello medio di	pressione sonora	dB(A)	37,8	37,8	37,2	
	Materiale serbatoio	-		Acciaio INOX 304		
	Connessioni ACS	pollici	G1" (DN25)	G1" (DN25)	G1" (DN25)	
erbatoio	Connessioni serpentina solare	pollici	G3/4" (DN20)	G3/4" (DN20)	G3/4" (DN20)	
	Tipo di anodo		, ,	Elettrodo di titanio con LED di allarme	,	
Pressione massima di esercizio		bar	10	10	10	
Campo di lavoro		°C		-5~+43		
	Portata aria (con canalizzazione)	m³/h	400	400	800	
Aria aspirata	Prevalenza ventilatore	Pa	60	60	60	
	Canalizzazione aria - Diametro	mm	177	177	177	
	Canalizzazione aria - Lunghezza Max	m	6	6	6	

1. Condizioni: aria aspirata 20°C BS (15°C BU), acqua ingresso 15°C / uscita 55°C. 2. Test secondo EN16147; aria 7°C. 3. Direttiva 2009/125/CE – ERP EU n. 814/2013 (Certificazione TUV Sud per tutti i modelli). 4. La perdita di refrigerante contribuisce al cambiamento climatico. In caso di rilascio nell'atmosfera, i refrigeranti con un potenziale di riscaldamento globale (GWP) più basso contribuiscono in misura minore al riscaldamento globale rispetto a quelli con un GWP più elevato. Questo apparecchio contiene un fluido refrigerante on un GWP di 1430. Se 1 kg di questo fisiodo refrigerante fosse rilasciato nell'atmosfera, quindi, l'impatto sul riscaldamento globale sarebbe 1430 volte più elevato rispetto a 1 kg di CO2, per un periodo di 100 anni, In nessun caso l'utente deve cercare di intervenire sul circuito refrigerante od di disassemblare il prodotto. In caso di necessità occorre sempre rivolgersi a personale qualificato.



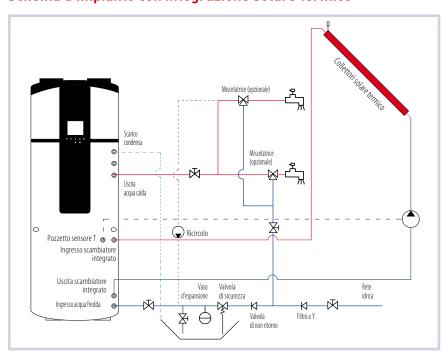
^{**} Test secondo EN 16147.

## Plus di prodotto



## Anodo al titanio inesauribile

Anodo al titanio di serie con il sistema Hot Water.


## Comfort in casa

- Programmazione per sfruttare eventuali fasce orarie vantaggiose sulla tariffa elettrica e avere acqua calda disponibile nei momenti necessari.
- Due modalità operative: massimo risparmio con l'utilizzo del solo compressore o massima rapidità con l'utilizzo contestuale di pompa di calore e resistenza elettrica integrata, per produrre grandi quantità di ACS in tempi brevi.

#### Sicurezza

- Poiché lo scambiatore di calore è esterno al serbatoio, non è possibile alcuna contaminazione tra acqua e fluido refrigerante.
- Sistema antilegionella: il pericolo del batterio della legionella è scongiurato grazie a cicli periodici che innalzano la temperatura dell'acqua all'interno dell'accumulo oltre i 65° C.
- L'anodo al titanio, protegge il serbatoio dall'azione corrosiva dell'acqua in modo inesauribile: garantisce maggiore affidabilità e minori costi di manutenzione rispetto a una soluzione con anodo al magnesio.

## Schema d'impianto con integrazione solare termico



#### 5 modalità d'installazione

- Installazione ad aria ricircolata: ingresso e uscita dell'aria avvengono nel locale d'installazione.
- Installazione con aspirazione di aria interna e uscita verso l'esterno.
- Installazione con aspirazione da un altro ambiente ed espulsione verso l'esterno.
- 4. Installazione con aspirazione dell'aria da un altro ambiente e espulsione verso un ambiente interno (con o senza canalizzazione).
- Installazione con aspirazione ed espulsione dell'aria verso l'ambiente esterno.









## Hot Water monoblocco 80 litri serie **DUCTED Kitchen**

- Scaldacqua in pompa di calore monoblocco, nata per essere installata all'interno del mobilio a colonna della cucina
- Gas refrigerante R134A
- Anodo di magnesio
- Classe di Efficienza Energetica A++
- COP 3,04*
- Acqua calda sino a 60° C con il solo compressore
- Ciclo antilegionella
- Eccezionale resistenza alla corrosione grazie alla tecnologia Duplex.



**TWMBS 8080-D A** 

## Classe energetica











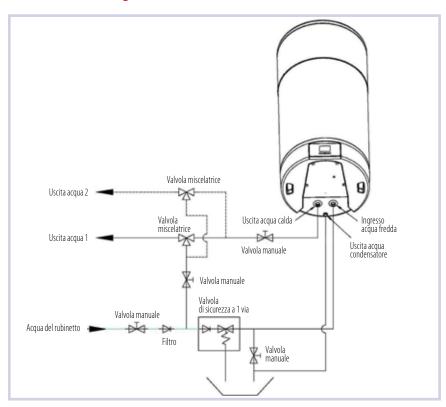
Certificazione EN 16147 da laboratorio terzo accreditato TUV Sud

Modello			TWMBS 8080-D A
Volume serbatoi	0	L	80
Serpentina integrazione solare (Inox)		m ²	non presente
Potenza termica	nominale1	W	1050
Assorbimento ele	ettrico nominale1	W	250
Capacità produzi	one acs nominale1	L/h	20
COP nominale1		W/W	4,2
COPDHW2		W/W	3,04
Profilo ciclo di pr	ova2	-	M
Tempo di riscald	amento ²	hh:mm	03:42
Volume acqua ca	ılda a 40°C²	L	116
Classe di Efficien:	za Energetica ³	-	A++
Grado di protezio		-	IPX1
Intervallo regola:	zione T. acqua calda	°C	38~70 (50 default)
Massima T. acqu	a calda solo compressore	°€	60
	Alimentazione	Ph-V-Hz	1-220~240V-50Hz
Dati elettrici	Resistenza elettrica integrativa	W	1500
	Corrente massima (inclusa resistenza)	A	8,30
	Tipo (GWP)4	-	R134a (1430)
Refrigerante	Quantità	kg	0,65
	Tonnellate di CO2 equivalenti	t	0,930
Compressore		-	Rotativo ON/OFF
Dimensioni	Unità ø x H	mm	520 x 1160
DILLIGIIZIOIII	Peso netto	kg	50
Livello potenza s	onora	dB(A)	46
Livello pressione	sonora a 2 m	dB(A)	31
	Materiale serbatoio	-	Acciaio Duplex
	Connessioni ACS	pollici	G1/2" (DN15)
Serbatoio	Connessioni serpentina solare	pollici	-
	Tipo di anodo	-	Barra di magnesio
Pressione massima di esercizio		bar	10
	Campo di lavoro	°C	-5~+43
	Portata aria (con canalizzazione)	m³/h	300
Aria aspirata	Prevalenza ventilatore	Pa	60
	Canalizzazione aria - Diametro	mm	120
	Canalizzazione aria - Lunghezza Max	m	8

1. Condizioni: aria aspirata 20°C BS (15°C BU), acqua ingresso 15°C / uscita 55°C. 2. Test secondo EN16147; aria 20°C.
3. Direttiva 2009/125/CE - ERP EU n. 814/2013 (Certificazione TUV Sud). 4. La perdita di refrigerante contribuisce al cambiamento climatico. In caso di rilascio nell'atmosfera, i refrigeranti con un potenziale di riscaldamento globale (GWP) più basso contribuiscono in misura minore al riscaldamento globale rispetto a quelli con un GWP più elevato. Questo apparecchio contiene un fluido refrigerante con un GWP di 1430. Se 1 kg di questo fluido refrigerante fosse rilasciato nell'atmosfera, quindi, l'impatto sul riscaldamento globale sarebbe 1430 volte più elevato rispetto a 1 kg di CO2, per un periodo di 100 anni, In nessun caso l'utente deve cercare di intervenire sul circuito refrigerante o di disassemblare il prodotto. In caso di necessità occorre sempre rivolgersi a personale qualificato.



^{*} Secondo EN 16147.


## Comfort in casa

Progettata per essere installata in cucina, come una caldaia tradizionale, la serie "Ducted Kitchen" si posiziona comodamente all'interno del mobilio a colonna della cucina, con espulsione dell'aria all'esterno.

#### Sicurezza

- Il serbatoio è realizzato in Duplex, una varietà di acciaio inossidabile estremamente forte e resistente alla corrosione.
- Sistema antilegionella: il pericolo del batterio della legionella è scongiurato grazie a cicli periodici che innalzano la temperatura dell'acqua all'interno dell'accumulo oltre i 65° C.

## Schema dei collegamenti idraulici



## Avvertenze per l'installazione

- È obbligatorio installare una valvola di sicurezza e non ritorno, sull'entrata dell'acqua fredda. In caso contrario si potrebbe danneggiare gravemente l'apparecchiatura. Utilizzare una valvola con taratura 0.7 MPa. Per il luogo di installazione, fare riferimento allo schema di collegamento delle tubazioni.
- 2. Il tubo di scarico della valvola di sicurezza deve scendere verticalmente e non dev'essere posto in un ambiente a rischio di congelamento.
- 3. L'acqua deve poter sgocciolare liberamente dal tubo e la sua parte terminale dev'essere lasciata libera.
- 4. La valvola di sicurezza dev'essere provata regolarmente per verificarne il funzionamento e rimuovere il calcare che potrebbe bloccarla.









## Il piacere del bagno in piscina in tutte le stagioni

I riscaldatori in pompa di calore Termal sono applicabili alle piscine coperte e scoperte, di piccole, medie e grandi dimensioni.

Costituiscono una soluzione efficace per riscaldare l'acqua della piscina, anche in autunno inoltrato o in caso di improvvisi abbassamenti di temperatura, **prolungando così la stagione di balneazione**.

Dotati di scambiatore di calore al **titanio** e compressore **ad alta efficienza**, le pompe di calore per piscina Termal garantiscono assoluta affidabilità di funzionamento, elevate prestazioni energetiche e ridotti consumi di esercizio.

## Scambiatore di calore al titanio: garanzia di sicurezza e affidabilità

Tutti i **riscaldatori in pompa di calore Termal** sono dotati di uno scambiatore al titanio in grado di riscaldare qualsiasi tipo d'acqua, indipendentemente dall'origine e dal trattamento utilizzato (trattamento al cloro, sterilizzazione a sale, bromo, ozono, ecc.) e tutti gli impianti con ampie esigenze di disinfezione.

La lega al titanio assicura la massima protezione, garantita nel tempo, contro la corrosione causata dal cloro.

#### Materiali resistenti: corpo della pompa in ABS

Tutte le unità sono **rivestite da una scocca esterna in ABS termoformato** non soggetto a ruggine. Tale rivestimento rende possibile l'installazione all'aria aperta di tutti i prodotti, senza rischio di deterioramento causato da agenti atmosferici o necessità di una particolare manutenzione.



## Riscaldatori in pompa di calore per piscine **ONSEN**



- Nuovo design, involucro in plastica ABS, antiruggine
- Gas refrigerante R32
- 5 modelli in monofase da 7,76 a 21,41 kW;
   1 modello in trifase da 30,05 kW
- Scambiatore di calore in titanio
- Temperatura dell'aria di esercizio -15°C~+43°C

## Tecnologia Full DC Inverter

Il riscaldatore per piscine ONSEN è dotato di:

- compressore DC Inverter ad alta efficienza;
- motore ventilatore DC Inverter.

Il design della della griglia d'espulsione e della ventola a dente di sega, garantisce un aumento della portata d'aria e un basso livello di rumorosità.



monofase

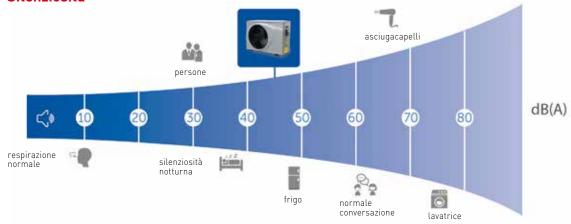
TCPNS 701 Z - TCPNS 1001 Z TCPNS 1301 Z - TCPNS 1701 Z TCPNS 2101 Z

trifase

**TCPSS 3001 Z** 

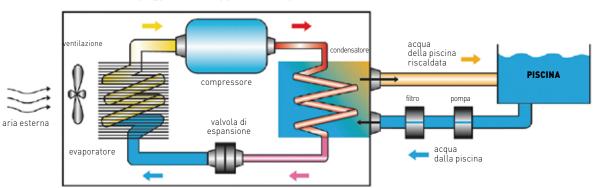


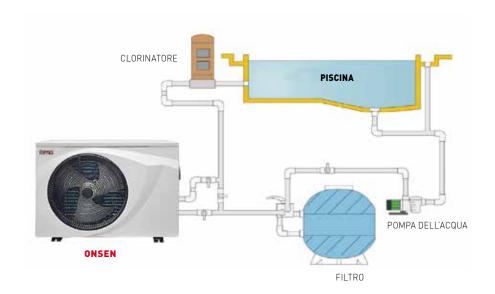







Modello		TCPNS 701 Z	TCPNS 1001 Z	TCPNS 1301 Z	TCPNS 1701 Z	TCPNS 2101 Z	TCPSS 3001 Z
Capacità di riscaldamento ad aria	26° C, umi	dità 80%, acqua 26° C in	entrata, 28° C in uscita				
Capacità di riscaldamento	kW	7,76~1,76	10,55~2,40	13,61~3,09	17,15~3,88	21,41~4,85	30,05~6,84
Potenza assorbita	kW	1,12~0,11	1,52~0,15	1,95~0,19	2,46~0,24	3,08~0,30	4,30~0,42
COP		15,75~6,94	15,84~6,95	16,12~6,98	15,96~6,98	15,95~6,96	16,14~6,99
Capacità di riscaldamento ad aria	15° C, umi	dità 70%, acqua 26° C in	entrata, 28° C in uscita				
Capacità di riscaldamento	kW	5,76~1,30	7,85~1,78	10,12~2,29	12,78~2,89	15,91~3,59	22,14~4,99
Potenza assorbita	kW	1,16~0,17	1,58~0,23	2,03~0,30	2,57~0,38	3,20~0,47	4,44~0,65
COP		7,57~4,96	7,59~4,97	7,64~4,99	7,63~4,98	7,59~4,97	7,63~4,99
Capacità di raffreddamento ad ari	a 35° C, ac	qua 29° C in entrata, 27°	C in uscita				
Capacità di raffrescamento	kW	4,28~1,06	5,92~1,48	7,25~1,82	9,47~2,35	11,58~2,96	15,89~3,93
Potenza assorbita	kW	1,15~0,16	1,57~0,22	1,89~0,26	2,51~0,34	3,07~0,43	4,17~0,56
EER		6,61~3,73	6,74~3,76	6,95~3,83	6,89~3,78	6,87~3,77	6,98~3,81
Alimentazione elettrica				220~240V / 1/50 Hz			380~415V / 3/50 Hz
Potenza nominale assorbita	kW	1,20	1,60	2,10	2,60	3,20	4,40
Corrente nominale	A	5,40	7,30	9,40	11,70	14,60	7,90
Compressore		Mitsubishi	Mitsubishi	Mitsubishi	Mitsubishi	Mitsubishi	Mitsubishi
Refrigerante		R32	R32	R32	R32	R32	R32
Scambiatore di calore		Titanio	Titanio	Titanio	Titanio	Titanio	Titanio
Direzione del flusso d'aria		orizzontale	orizzontale	orizzontale	orizzontale	orizzontale	orizzontale
Volume del flusso d'acqua	m³/h	2,5	3,5	4,5	5,5	6,5	9
Tipo di sbrinamento		tramite valvola a 4 vie	tramite valvola a 4 vie	tramite valvola a 4 vie	tramite valvola a 4 vie	tramite valvola a 4 vie	tramite valvola a 4 vie
Intervallo di temperatura di lavoro	%	-15~43	-15~43	-15~43	-15~43	-15~43	-15~43
Livello sonoro	dB(A)	≤ 43	≤ 43	≤ 46	≤ 46	≤ 46	≤ 48
Materiale involucro		Plastica ABS	Plastica ABS	Plastica ABS	Plastica ABS	Plastica ABS	Plastica ABS
Colore		Marrone					
Dimensioni nette (LxPxH)	mm	860x320x592	860x320x592	920x360x640	920x360x640	920x360x640	1080x370x730
Dimensioni della confezione (LxPxH)	mm	940x400x710	940x400x710	990x430x760	990x430x760	990x430x760	1140x440x860
Peso netto	kg	40	42	51	54	58	86
Peso lordo	kg	51	53	62	65	69	97
Livello di impermeabilità		IPX4	IPX4	IPX4	IPX4	IPX4	IPX4





## Silenziosità



## **Applicazioni**

## **SEQUENZA DI RISCALDAMENTO**







## DIRETTIVA LEGISLATIVA SULLA PROMOZIONE DELL'USO DELL'ENERGIA DA FONTI RINNOVABILI

#### **SUPERBONUS 110%**

Per accedere al Superbonus è necessario effettuare una completa sostituzione del precedente impianto a favore del nuovo e gli interventi effettuati devono assicurare, nel loro complesso, il miglioramento di almeno due classi energetiche dell'edificio, o se non possibile, il conseguimento della classe energetica più alta, da dimostrare mediante l'attestato di prestazione energetica (APE) rilasciato da parte del tecnico abilitato nella forma della dichiarazione asseverata.

La detrazione si applicherà sulle spese documentate e rimaste a carico del contribuente sostenute dal 1 luglio 2020 al 31 dicembre 2025 in percentuale variabile dal 110% al 65% in base alle indicazioni di legge, da ripartire tra gli aventi diritto in quattro quote annuali di pari importo.

La Legge di Bilancio stabilisce tutti gli interventi ammessi nel Superbonus.

Nel dettaglio possono essere elencati in:

- 1 Interventi di isolamento termico delle superfici opache verticali, orizzontali e inclinate che interessano l'involucro dell'edificio con un'incidenza superiore al 25% della superficie disperdente lorda dell'edificio o dell'unità immobiliare situata all'interno di edifici plurifamiliari che sia funzionalmente indipendente e disponga di uno o più accessi autonomi dall'esterno.
- 2 Interventi sulle parti comuni degli edifici per la sostituzione degli impianti di climatizzazione invernale esistenti con impianti centralizzati per il riscaldamento, il raffrescamento e/o la fornitura di acqua calda sanitaria, a condensazione, con efficienza almeno pari alla classe A di prodotto, a pompa di calore, ivi compresi gli impianti ibridi o geotermici, anche abbinati all'installazione di impianti fotovoltaici, ovvero con impianti di micro-cogenerazione o a collettori solari.

Nota. I parametri possono subire variazioni in base agli aggiornamenti delle normative vigenti.

#### **DETRAZIONE 65% PER RIQUALIFICAZIONE ENERGETICA – ECOBONUS**

L'agevolazione consiste in una detrazione dall'Irpef o dall'Ires ed è concessa quando si eseguono interventi che aumentano il livello di efficienza energetica degli edifici esistenti. In generale, le detrazioni sono riconosciute se le spese sono sostenute per:

- la riduzione del fabbisogno energetico per il riscaldamento;
- il miglioramento termico dell'edificio (coibentazioni pavimenti finestre, comprensive di infissi);
- l'installazione di pannelli solari;
- la sostituzione degli impianti di climatizzazione invernale.

Si rimanda al sito dell'Agenzia delle Entrate per i dettagli e la fattibilità di ogni singolo intervento.

## Chi può richiedere l'Ecobonus

Possono usufruire della detrazione tutti i contribuenti residenti e non residenti, anche se titolari di reddito d'impresa, che possiedono, a qualsiasi titolo, l'immobile oggetto di intervento.

In particolare, sono ammessi all'agevolazione:

- le persone fisiche, compresi gli esercenti arti e professioni;
- i contribuenti titolari di reddito d'impresa (persone fisiche, società di persone, società di capitali);
- le associazioni tra professionisti;
- gli enti pubblici e privati che non svolgono attività commerciale.

I titolari di reddito d'impresa possono fruire della detrazione solo con riferimento ai fabbricati strumentali da essi utilizzati nell'esercizio della loro attività imprenditoriale.

Tra le persone fisiche possono fruire dell'agevolazione anche i titolari di un diritto reale sull'immobile, i condòmini, per gli interventi sulle parti comuni condominiali, gli inquilini, coloro che hanno l'immobile in comodato.

Sono inoltre ammessi a fruire della detrazione, purché sostengano le spese per la realizzazione degli interventi e questi non siano effettuati su immobili strumentali all'attività d'impresa:

- il familiare convivente con il possessore o il detentore dell'immobile oggetto dell'intervento (coniuge, parenti entro il terzo grado e affini entro il secondo grado) e il componente dell'unione civile;
- 🔳 il convivente more uxorio, non proprietario dell'immobile oggetto degli interventi né titolare di un contratto di comodato.

Le detrazioni sono usufruibili anche dagli Istituti autonomi per le case popolari, comunque denominati, dagli enti aventi le stesse finalità sociali dei predetti istituti, dalle cooperative di abitazione a proprietà indivisa.

Per richiedere gli ecoincentivi si rimanda alla Guida dell'Agenzia delle Entrate dedicata alle Detrazioni per la riqualificazione energetica.



#### **RISTRUTTURAZIONE EDILIZIA 50%**

#### Bonus Climatizzatori e Scaldacqua a pompa di calore

- Si tratta di una detrazione dall'IRPEF di una quota ripartita in 10 rate annuali.
- La detrazione fiscale riguarda gli interventi di ristrutturazione eseguiti sulle singole unità immobiliari e sulle parti comuni dei condomini. Utilizzabile per installazione di climatizzatori e pompe di calore ad alta efficienza.
- Fruibile esclusivamente da persone fisiche.
- Valida sino al 31/12/2024 con aliquota al 50%. Confermato il tetto massimo di spesa a 96.000€.
- Obbligo di conservare ed esibire a richiesta degli uffici tutti i documenti relativi all'immobile oggetto della ristrutturazione.

Anche per i lavori avviati a partire dal 1° gennaio 2023 e fino al 31 dicembre 2024 sarà dunque possibile beneficiare della detrazione fiscale del 50% delle spese sostenute ed entro il limite di 96.000 euro di spesa.

Si rimanda alla Guida della Agenzia delle Entrate dedicata alle Detrazioni per ristrutturazioni edilizie: http://www.agenziaentrate.gov.it/.

#### **CONTO TERMICO 2.0**

#### Pompe di Calore e scaldacqua a pompa di calore

Il Conto Termico incentiva interventi per l'incremento dell'efficienza energetica e la produzione di energia termica da fonti rinnovabili per impianti di piccole dimensioni. I beneficiari sono principalmente le Pubbliche amministrazioni, ma anche imprese e privati, che potranno accedere a fondi per 900 milioni di euro annui. di cui 200 destinati alle PA.

Grazie al Conto Termico è possibile riqualificare i propri edifici per migliorarne le prestazioni energetiche, riducendo in tal modo i costi dei consumi e recuperando in tempi brevi parte della spesa sostenuta. Recentemente, il Conto Termico è stato rinnovato rispetto a quello introdotto dal D.M. 28/12/2012.

Oltre ad un ampliamento delle modalità di accesso e dei soggetti ammessi (sono ricomprese fra le PA anche le società in house e le cooperative di abitanti), sono previsti nuovi interventi di efficienza energetica. È stata inoltre rivista la dimensione degli impianti ammissibili e snellita la procedura di accesso diretto per apparecchi con caratteristiche già approvate e certificate (Catalogo).

Il limite massimo per l'erogazione degli incentivi in un'unica rata è di 5.000 euro e i tempi di pagamento sono all'incirca di 2 mesi.

I soggetti che possono richiedere gli incentivi del nuovo Conto Termico sono:

- le Pubbliche amministrazioni; sono inclusi gli ex Istituti Autonomi Case Popolari, le cooperative di abitanti iscritte all'Albo nazionale delle società cooperative edilizie di abitazione e dei loro consorzi costituiti presso il Ministero dello Sviluppo Economico, nonché le società a patrimonio interamente pubblico e le società cooperative sociali iscritte nei rispettivi albi regionali;
- i soggetti privati; l'accesso ai meccanismi di incentivazione può essere richiesto direttamente da questi soggetti o tramite una ESCO: le Pubbliche amministrazioni dovranno sottoscrivere un contratto di prestazione energetica, i soggetti privati un contratto di servizio energia.

Nello specifico, dal 19 luglio 2016 possono presentare richiesta di incentivazione al GSE solamente le ESCO in possesso della certificazione, in corso di validità, secondo la norma UNI CEI 11352. L'accesso agli incentivi può avvenire attraverso due modalità:

- tramite accesso diretto: la richiesta deve essere presentata entro 60 giorni dalla fine dei lavori. È previsto un iter semplificato per gli interventi riguardanti l'installazione di apparecchi di piccola taglia (per generatori fino a 35 kW e per sistemi solari fino a 50 m2) nel caso di installazione di componenti con caratteristiche garantite che sono contenuti nel Catalogo degli apparecchi domestici, pubblicato e aggiornato periodicamente dal GSE.
- tramite prenotazione: per gli interventi ancora da realizzare, esclusivamente nella titolarità delle PA o delle ESCO che operano per loro conto, è possibile prenotare l'incentivo prima ancora che l'intervento sia realizzato e ricevere un acconto delle spettanze all'awio dei lavori, mentre il saldo degli importi dovuti sarà riconosciuto alla conclusione dei lavori, in analogia a quanto viene attuato per la modalità in Accesso Diretto.

Per la prenotazione dell'incentivo, le PA possono presentare una domanda a preventivo, trasmettendo al GSE uno dei seguenti set di documenti:

- una Diagnosi Energetica e un atto amministrativo attestante l'impegno alla realizzazione di almeno un intervento tra quelli indicati nella Diagnosi Energetica stessa;
- un contratto di prestazione energetica stipulato tra la PA e una ESCO oppure copia del contratto stipulato per l'affidamento, a seguito di gara, del servizio energia pertinente all'intervento proposto;
- un prowedimento o un atto amministrativo attestante l'avvenuta assegnazione dei lavori con il verbale di consegna dei lavori stessi.

Sia la domanda presentata in accesso diretto che quella mediante prenotazione sono valutate dal GSE secondo le disposizioni dei procedimenti amministrativi regolati dalla Legge 241/90.



A causa della continua evoluzione tecnologica dei prodotti, ci riserviamo il diritto di variare le specifiche tecniche all'interno di questo catalogo in qualsiasi momento e senza dare preavviso. Gli schemi idraulici riportati sono soltanto esemplificativi e non sostituiscono il progetto d'impianto.



## **HOT WATER E ONSEN**

SCALDACQUA IN POMPA DI CALORE E RISCALDATORI IN POMPA DI CALORE PER PISCINE



## TERMAL srl

Via della Salute, 14 40132 Bologna - Italia

Tel. +39 051 41 33 111 Fax +39 051 41 33 112

info@termal.it www.termal.it